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' This technical report consists of three parts. The central problem
-'::
is the estimation of three-dimensional motion parameters of a rigid planar
- patch from image sequences (each frame is a central projection).
B In Part I, we show that given two image frames one can determine
‘ uniquely (by solving linear equations) eight "pure parameters' which are

nonlinear functions of the actual motion par#meters. In Part II, a method
- is presented for determining the motion parameters from the eight pure para-

meters. The method requires the singular value decomposition of a 3 x 3

e
e
N

matrix, 'It is also shown that generally there are two distinct solutions

for the motion parameters. Two results are given in Part III. First, four
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point correspondences between two image frames are necessary and sufficient
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to determine the eight pure parameters. Second, with three image frames,

the motion parameters are unique.
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ESTIMATING THREE-DIMENSIONAL MOTION
PARAMETERS OF A RIGID PLANAR PATCH

PART I

R. Y. Tsai
and
T. S. Huang
Coordinated Science Laboratory

University of Illinois
Urbana, Illinois 61801

January 15, 1981 revised May 26, 1981

ABSTRACT

x,;’> We present a new direct method of estimating the three-dimensional

motion parameters of a rigid planar patch from two time-sequential perspec-

tive views (image frames). First, a set of 8 pure parameters are defined.

These parameters can be determined uniquely from the two given image frames

by solving a set of linear equations. Then, the actual motion parameters

are determined from these pure parameters by a method which

solution of a 6th-order polynomial of one variable only, and

certain efficient algorithm for solving a 6th-order polynomial.

a scaling factor for the translation parameters the number of real solutions

rtequires the

there exists a

never exceeds two. In the special case of three-dimensional translationm,

the motion parameters can be expressed directly as some simple functions

of the 8 pure parameters. Thus only a few arithmetic operations are needed.

Aside from




I. INTRODUCTION

In the past, most work on motion estimation has been restricted to

!! two-dimensional translation. Recently, Roach and Aggarwal [1l] and Huang
43 and Tsai [2,3,4] presented methods of estimating three-dimensional motion
F‘-

parameters of rigid bodies based on image-space shifts. The method of

: Roach and Aggarwal requires the solution of a set of 18 simultaneous non-
linear equations; that of Huang and Tsai 5 simultaneous nonlinear equatioms.
Huang and Tsai [4,5] also described a direct method of estimating three-
dimensional motion parameters of rigid planar patches based on the relation-
ship between temporal and spatial differentials of image intensity. This

- method results in the solution of 8 simultaneous nonlinear equations. In

none of the above works was the question of the uniqueness of the solution
to the nonlinear equations investigated.
i' In this paper, we present a new direct method of estimating three- :

dimensional motion parameters of rigid planar patches. We define a set of ]

N

eight pure parameters and demonstrate using the theory of Lie Transformation

Group that given two pictures, these pure parameters are unique. As for

d - NP

r

the estimation procedure, we first show using the converse of the 2nd

Lie theorem [10-13] that these 8 pure parameters can serve as the coordinate

P A LN I

system of a certain Lie Transformation Group. Then, we use the result in

Y 3

[10-15] to show that these 8 pure parameters must satisfy a set of linear
equations. Furthermore, the real motion parameters can be computed from
these pure parameters by solving a six-order polynomial.

Our new direct method has several advantages. First, it requires the
solution of a single sixth-order polynomial of one variable only. Second,

it demonstrates that more than one solution may exist and therefore answers

Ceg e e e
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the uniqueness question. Third, in the special case of three-dimensional i

translation, the motion parameters can be expressed directly as some simple

functions of the eight pure parameters. Therefore, only a few arithmetic

operations are needed.

II. THE BASIC MOTION EQUATIONS

We are interested in estimating three-dimensional motion parameters
of rigid and deformable bodies from time-sequential perspective views
(frames). Throughout this paper, we shall assume that we work with only
two frames at times t1 and tz (tl < tz).

The basic geometry of the problem is sketched in Fig. 1. Consider a
particular point P on an object. Llet

(x,y,2) = object-space coordinates of a point P at time tl’

(x',y',2') = object-space coordinates of P at time t,.
(X,Y) = image-space coordinates of P at tl.
(X',Y') = image-space coordinates of P at t,.

It is obvious from Fig. 1 that

= . ' = p.
X=F z X F z
(L
1
vy=rZ v=rk
Assume that from time t, to t, the three-dimensional object has under- 1
gone translation, rotation, and linear deformation [8]. Then, we have i
x' x x AX | .
y'[ =Sly| +Ry|+|4y () 1
z'| iz 2z ' Az | *

where 4




+n3.1 ®)

Note that (Ax,Ay,Az) is the amount of translation S in the linear deforma-
tion matrix, and (R+1), where I is a 3X3 unit matrix, is the rotation
matrix. The rotation is around an axis through the origin and with
directional cosines (nl,nz,na). The amount of rotation is 6. Therefore,
the Pys Pps 3 defined in (5) are the x, y and z components of the rotation
vector with length 6 and directional cosines (nl,nz,n3).

Clearly, Eq. (2) represents an afine transformation

]

x by, by, bya|[X] [ax
! =

y Ba1 Byp B3 || Y| *+| &Y ™
t

2z hP31 b32 byy || 2 Az

Conversely, any afine transformation can be decomposed as in Eq. (2).

K ," 'Al - ‘;. .'."x ,-' '.- " .
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III. MOTION OF PLANAR PATCHES

We now restrict ourselves to points on a planar patch with equation
ax + by +cz =1 (8)

at time tl‘ Then, it is readily shown from Eqs. (1) and (8) that

A S
Z = X+bY+cF 9

and from Eqs. (1), (9), and (7) that

alx + azY + a3

a7x+a8Y+ 1

X' - B N 8
(10)

a4x+aSY+36 é

a7x+ 38Y+ 1

Y’ 'I.‘2 X,Y)

where

.bu+an . -b21+aAy
1 b33+cAz 4 b33+cAz

.b12+be . .b22+bAy
2 b33+cAz 5 b33+cAz

(bl3+ch)I-‘ (b23 + cAy)F

+cAz a6 = b33+cAz (11)

a., =
3 by,

Tt e
Aoa g

b31+aAz .

& " (®,5 + cb2)F

b 2+bAz

s " (®55 + cA2)F

We now specialize to the case of a rigid planar patch. Then Egs. (ll) '-::4

become 3]




B o3
T a. = 14+ alx a §P3+GAY
i 1 1l+caz 4 1 + cAz
B 93 +bix o o libay
' 22 1+cAz 5  1l+clz
L (%, +CAX)F (<p, +cAy)F
a, » ——————— a = ——— (12)
_ 3 1+cAz 6 1+cAz
-
ik P, +alhz
= &7 = {W+caz)F
. q:l+bAz
o 8 = T +cdz)F
g Eq. (10) defines a mapping from the 2-space (X,Y) onto the 2-space (X',Y').
4 It will be shown in Section III that corresponding to any specified mapping
».':f'?" between the two 2-spaces, there can be only one set of values for the
l parameters 85000585, We call them the 8 pure parameters. In Section III,
we shall also describe a method of determining these pure parameters from
&
the two given image frames.
v
n Once we have determined the pure parameters ‘1"2"""8’ we can
i attempt to find the actual motion parameters: Ax,Ay,Az,cpl,zpz,cpya,b, and ¢
- by using Eqs. (12). It is obvious first of all from looking at the right-
hand sides of Fqs. (12) that Az is a scale factor which cannot be determined.
R
o We therefore let
L a" & ajz b" = bAz < 4 clAz
(13)
g" AX" A % Ay" A %
E The unknown motion parameters are now:
‘-, Pys Ppr Py X", Ay", &, b", and c.

...................
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Thus we have & nonlinear equations with 8 unknowns. This, however, does

not mean that the solution is necessarily unique. In fact, it turns out

it is not. o
After some tedious manipulations, we get from Egqs. (12) 3
|6 n5 . 14 n3 "2 . 1" - ’
dghx'® + dax'™ - d pe™ 4 dgaxt? 4 40X+ dax" + dg = 0 (14) ‘I
where j:i
:
d = a. h-h (hh, - hoa ) .
6 503 6 32 610 3
“d

2 2 2
d5 h3 (h2 + h6 + h3 - 4310350 .
2 2 2 4
q, = -h3 (a50 + Salo) + am(Zh6 - hz) 4
- 3h2h3h6 + 4310350 4
2..2 .2 2 "
dy = Zhy(h, + hy - hy + 4alo) (15) o
2 2 2 2 2 2 3
c.‘l2 (-h3 + 4a10)a50 + (61'13 - 4a10 - 2h2 + h6)a10 g
-31'121'13116 j
- 2 .2 .2 _,2 "
dl h3 (h2 + h6 + h3 4310 + 4310850) '

2
dg = (a5 - a;)hy = h,(hya,5 + hjhg)

and

F (16)
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; And furthermore 1
b ‘b ax™ + Bax'? - B Ax" + b, =
.- Ay" - '2 -‘
- ” E
- hsAx‘ + leoAx - h3 _;j
[.:‘ :
PR it U R ks 1 B

E Ax"z - h3A3" +a, AY"z - h6Ay" +ag
o, B" = E('h - Ay"™) +h ]
. 6 (] an
i:} a" = E(h3 - Ax™) + h3 :
F =b" -« (c+1l)a,F = (E_l_l)a_s. - ay"e .
~N
9, = =a" + (c+1)a,F = =(c+1) 3 + Ax"e S
! ] ' 7 F =

¢4 = Oy"a" - 8, (G+1) = -Ax'D" + a,(c+1)

SEREEN B
D

To find the motion parameters, we first solve Eq. (14) for Ax'". Then

F the others are obtained from Eqs. (17). Since Eq. (14) is a sixth-order F

..
e
. o d W
.8 J « o
Asonda datayia et IR

polyncmial equation, we can have potentially 6 real roots which give us 6§

et

solutions for the motion parameters. For all the numerical examples we

have tried, only two real roots are found for Eq. (l4). Cne such numerical

example follows:

8, = .97 a, = .058 a, = .059 -
a, = .027 ag = .976 ag = .059 5‘
a, = 047 ag = .047 >

........

v - o ! fo . g . . . . . - A . -
P S S St S AT VNN . Al w latallata “a PR U PISNE Y'Y o a a b e Son X




bl
yu '

L B R a
Sy
Y

Solution 1 - Ax = ,9 Ay = .9 . =1
g = 1° n, = cos 90' n, = cos 90° ny = cos 0°
a/A = cos 60° b/A = cos 60° c/A = cos 45°
A =Jat+bd:c? - 1/10
Solution 2 = Ax = ,707 Ay = .707 Az = 1 1
= o - 9 -» [ - ;
: 3 1.59 o, cos 58.4 n, = cos 121.6 n, cos 47.9..
’b a/A = cos 36.2° b/A = cos 56.2° c/A = cos 51.8° J
i A=Jalebl e = 1/8.74 ?
¥

We mention in passing that an efficlent iterative method for finding the

real roots of a sixth-order polyncmial equation is givea in Ref. 7.

For the special case of three-dimensional tramslation, the results
are considerably simpler. From Egs. (12), we get j
) al(alasr - + 1) + ("138 - 3217)F b

Ax" .
375‘ (alaal-' -a + 1)

S

ot

‘5 (35372' - as + 1) + (3537 - A'S)F

% (RS

Ay" - -
aSF(asa7£‘ ag + 1) ?
E-' - (asa7F - ag + l)a7 . (alaSF -3 + l)a./. 18 1
'L. 3537 - 3,3, a,35 - aa, "
b E:éaf -3+ I.)a8 ) (alash' - a + ].)as :
- ) a3, - '4'8 8,35 = 2,3,
E. ' : . aza7F -3 + 1 '4‘8F - a +« 1 i

(‘1‘8 - a7az)5' = (3537 - aaaa)E‘ 1

Therefore, only a few simple arithmetic operations are needed.
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IVv. DETERMINING THE 8 PURE PARAMETERS

We now go back and examine Eqs. (10). For a particular set of values
for the parameters (al,az,...,as), the equations represent a transformation
which maps the 2-space (X,Y) (the coordinate space of our image frame at
time t,) onto the 2-space (X',Y') (the coordinate space of our image frame
at time tz). Let us consider the collection G of transformation correspond-
ing to all (al,az,...,as) € R?. We shall show that it is a continuous (Lie)
group of dimension eight and that to any given mapping from the (X,Y)-
space onto (X',Y')-space corresponds only one set of values for
(al,az,...,aa). Furthermore, we shall describe a method of determining
the pure parameters (al,az,...,aa) from a given pair of image frames at
and t,.

1 2
In classical continuous group theory, it is known [13] that G satisfies

times t

the four group axioms, namely, Elosure, existence of inverse and identity,
and associativity. Furthermore, the composition function for the group
parameters ai's are continuous. It is also known [13] that the a

are essential parameters in the sense that the a

i's in (10)

i's are functionally in-
dependent. However, it is not known whether the ai's in (10) are unique, i.e.,
whether there can be two different sets of values of .1" such that (10) gives
the same mapping (X,Y¥)— (X',Y'). Because of this reason, it is not easy to
verify whether G is a Lie group according to the modern definition since in
modern definition, in addition to the properties satisfied by the classical
continuous group according to the classical definition [12,13], several
topological properties have to be satisfied, and these properties can not be
easily verified unless we are certain that the group parameters ai's are
unique. In the following, we prove that G is strictly a Lie group and that

the ai's are unique.




....................................................
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Before we give the proof, we motivate it by the following considera-

tions. Let us assume that G is indeed a Lie group and that (al,az,...,aa)

is a coordinate representation for the group G. The identity element of

the group is obviously e = (1,0,0,0,1,0,0,0). Then the operators of the

Lie algebra associated with the group G are given by:

(19)

where g is used to represent a member of G. From Eqs. (10) we get readily

IR

3

NS |

3
X, =Xs5x
g 2
- L =Y
3
X;* 5%
-]
L%y
3 (20)
=Y
: -
} L~
2 3 2
; A T S
-] -]
Xy = - Y
£

Now we start our proof, Consider the set of vector fields on the

& differentisble manifold (X,Y) as given by Eqs. (20). It can be e'uily
verified that nocne of the xj can be expressed as a‘. linear combination of
the others, i.s., [xJ: §=1,2,...,8} ars linearly independeat; and furthe:s-

— more for any ¢,!

[x,%,] ] X%, - XX, =Lep X 1)

~nM
0
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:3:" where cl;j are constants. From these two properties of {Xi} we conclude
| from the converse of Lie's second fundamental theorem [10-13] that there isa
" unique Lie group of transformation of order 8 which has {xi} as its Lie

" algebra. We proceed now to show that G is that group.

From [15,10,11], one can generate the finite equations of a Lie group

F of transformation with the ki's as the canonical coordinates of the
- second kind as follows:
I
' -
) X exp(lsxa)exp(x7x7) expcxlxl)x
\ : 22)
h Y' = exp(lsxs)exp(l7x7) expo.lxl)Y
It is proved in [6] that (22) is equivalent to the following:
P
I
(38
< = alx+a2Y+a3 ¢ - a4X+a5Y+a6 @3)
a7x+asY+1 a7x+a8Y+1
where
A
a, =e ]7\ a, = le
A A A
1 5
a, = (lse +x6x2)h a =e llae A
AS Jk5 KS }‘1
8, = e Q1 +7\2h4)l 8 = [160 +h,e 0.33 +x612)]x (24)
)‘1 klx )‘5 ks
a, = -0\7e +k8e 48 N ag = -[).77L2 + e 18(1+7\27\4)]k

A A

A A
1 S S
A= [1-X7Q3e +k612) -lse

1 -1
"8‘*&‘ ks(k:’e +7L6K2)l

Comparing (10) and (23) shows that G is indeed a Lie Group of trans-

formation, and that since the )\ i" are the canonical coordinates, they are

unique, and therefore from (24), the pure parameters a; «c.agare also unique.

2
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Iet £ be any function defined on the 2-space (X,Y) (in our case, f will
be the intensity of the picture elements), then from Lie Group Theory

[10-15], we have
Af = £ g8 X.f (25)
where Bi = ai - ei

e, = ith component of the group parameters at the identity

Af = £(X',Y') - £(X,Y) = frame difference

(The implicit assumption here is that the intensities of the picture
elements in the image frames corresponding to the same physical object

point are the same.) (Clearly,

a = Bl +1
as = Bs +1

a = Bi’ i=2,3,4,6,7,8

Eq. (25) is used to determine the Bi's and therefore the 8 pure parameters
ai's. We pick 8 or more points (X,Y), calculate at each point Af and

Xif (i=1,2,...,8), and substitute into Eq. (25) to obtain 8 or more
equations which sre linear in the 8 unknowns Bi's. Then we find the least-

square solution.

V. DISCUSSIONS

In this paper we have investigated the proolem of estimating three-

dimensional motion paramecers of a rigid planar patch from two image frames.

The following results have been established:
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9] The fact that we can define 8§ pure parameters 31:3y,000352, which are

unique for any given mapping from the 2-space (X,Y) (the coordinate

space of the inage frame ac :1) onts the 2-space (X',Y') (the coordinate

space of the image frame at :2).

2) A method of determining the actual motion parameters ;l, ;2, F3 Ax",

iy, a", b", sund ¢ from the PUTe paramecers a;, a,, «..; & which

8
requires the solution of a 6th-order polynomial of one variable
only. Aside from a scaling factor in the translation parameters,

the number of real solutions never exceeds two.

3) A mathod of detarmining the 8 pure parameters 815 35, eee, g from
the two given image frames. This requires the solution of a set of
linear equations ounly.

It is to bae noted that 1) and 2) are independent of 3). The pure
parameters can be determined by other methods. For example, if one can
identify 8 or more corresponding poiat pairs in the two image frames [2],
then the '1" can be determined from Eqs. (10) by solving a set of linear

equations.

Recently, an alternative way of analyzing the uniqueness problem and
estimating the three-dimensional motion parameters has been developed which
stems from the results contained in this paper, and requires computing the
singular value decomposition (SVD) of a certain 3X3 matrix only. The eight
pure parameters defined by the authors in this work will again be used.

It is briefly mentioned in [6], and the detailed paper will be submitted

soon.
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Furthermore, the conclusion that the motion parameters are generally
not unique is of course independent of the method of determining these
parameters. The question arises: Are the motion parameters unique, aside
from the scaling factor, if the rigid patch is nonplanar? We have solved

this problem recently [7], and will publish it in the near future.
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T Abstract

.I We show that the three-dimensional motion parameters of a rigid planar
h patch can be determined by computing the singular value decomposition (SVD)
3\ of a 3 x 3 matrix containing the eight so called "pure parameters'. Further-
- more, aside from a scale factor for the translation parameters, the number of
': solutions is either one or two, depending on the multiplicity of the singular
v values of the matrix.

i




I. INTRODUCTION

The processing of image sequences involving motion has become increas-
ingly important. Because of the key role motion estimation plays in image
sequence processing, a considerable amount of effort has been devoted to this
topic, for example, see-Ref. [1-17]. However, except for [1-8][16][17], most
past work considers only2-D motion, especially translation, Ref. [1-8][16][17]
were among the first to consider 3-D motion and [1][3][l7] were among the
first to consider the problem of uniqueness of solutions. 1Im [1][3], the
eight "pure parameters" were introduced for the case of a rigid planar patch
undergoing general 3-D motion, and proved to be unique given two successive
(in time) perspective views., The proof makes use of the theory of Lie Group
of transformations. It was also shown that these 8 pure parameters can be
computed by solving a set of linear equations. Furthermore, once the pure
parameters are determined, the actual motion parameters c;h be computed by
solving a 6-th order polynomial equation of one variable if the motion is
small, Theoretically, the number of solutions cannot exceed six aside from
a common scale factor for the translation parameters; experimentally, the
maximum aumber of solutions has been found to be two. In this paper, we show
that whether the motion is small or not, once the eight pure parameters are
computed using the method described in [1][ 3], the actual motion parameters
can be estimated by computing the SVD of @ 3 x 3 matrix consisting of the
eight pure parameters. Also, by using the rigidity constraint and the fact
that a plane in 3-space can b? oriented in at most two possible ways in order
to intercept an ellipsoid at a circular cross-section, we prove that the
number of solutions is either one or two, depending on the multiplicity of the

singular values., Physical description of the motion is stated and justified.
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II. THE EIGHT PURE PARAMETERS AND THE MOTION OF PLANAR PATCHES

The basic geometry of the problem considered in [l][3] is repeated ;
here in Fig. 1. Throughout this paper, we shall assume that we work with
only two frames at time tl and tz (x:l < tz). Consider a particular point P
on the object. Let ?

(x,y,2) = object-space coordinates of a point P at time tl.

§ Y SN

(x',y',2') = object-space coordinates of P at time €,.

2

(X,Y) = image-space coordinates of P at £

&',Y") image-space coordinates of P at €, -

3
3
=l
It was shown in [1][3] that for a rigid planar patch undergoing 3-D .
-
motion (a rotation with a small angle 6 around an axis through the origin 4
with directional consines a5, 0y, n3, followed by a translation with trans- "
A "
lation vector (4x, Ay, Az)),the image-space coordinates before and after the
-]
motion are related by the following equations: ;
5 = alx + azY + a3 a
a7x + asY +1
¢y 8
_— a +a ¥Y+1
f where E
1 1 + cedz 5 1+ celz
-n,8 + b-Ax (-n,8 + c.Ay)F i
2, =—— ., = —i_
2 1 + c-A2 6 1 + c-Az @) ’
(0,8 + c.Ax)F -n,0 + a2 -
a .—2_-—_ ‘ - L——- =
3 1 + ceAz 7 (1 + c-A2)F
n39 + a4y nle 4+ beAz
% ° 1T +caz 88 " W+ c-anF
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: (X,Y) = Image-space 3
L coordinates of the 3
point P at time t; 5

(AX,AY)=Image-
space shifts from
time t; to 1, for

coordinates of the the point

point P at time t,

LS ) TRV e e et
LA.J'1>J-‘ ‘1,'. R

g
4’ =Image-space
8

” Object\Space ﬁh

Rioen

(x,y,2)=Object space i1
coordinates of a physical 7
point P on the object
at time #;
(xy’,2')= Object-space -
y; coordinates of the same %

P
» * r r' e
hadad aa’iens

poS——
n.".' g
y) VAN
.- o,

Bt an o
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o] ¥
f‘f’

]

Fig. 1 Basic geomacsy for thrae- : 1

. dizeasional mocion -
estimation, .

-----------




2-5

Sadnadndd

where a, b, ¢ are the parameters that appear in the following equation:

ax + by +cz =1 (€))

D YT
:"."- ‘,_,.‘."- o
e & T L PR .
I<L‘

?
5.1 .-
S s

which describes the surface of the object in the object space coordinate

_ system at time € I
Eqs. (2) are applicable when the rotation angle is small. For general
‘.,:flf 3-D motion, it is well known in mechanics and computer graphics [18] that any

3-D rigid body motion is equivalent to a rotation followed by a translation

x'! X Ax
y' = Rly| + |y (%)
] z' z | Az
h where R 13 a 3 x 3 orthonormal matrix
= 24 (1-a%)cosd 1-c088)-n,s1ind 1-cos8 -
E':j'.' n1+( -nl)cos nlnz( -c08 )-n3s n n1n3( =-cos )+n23
R= nlnz(l-cose)+n3sin9 n§+(1-n§)cose o nzn3(1-cose)-nlsin9 (5)
0,0, (l-cos8) -nzsine n,n, (L-cos@ )+n;8ind n§+(1-n§)cose
Following exactly the same procedure as in [1][3], one can show that
(1) is again valid if (2) is replaced by

ni + (l-ni)cose, + a.0x 8,8,(l-cos®) - n,sing + b.dx }

. 33 + (1'05)0089 + c-Az 82 57 iy + (l-n§)cosd + c:8z
. .
[nlrb(l-cosﬁ)-}nzsine+c-Ax]l-' . - nlnz(l-cose)+n3sine + a-Ay >
a; = ng + (l-ng)cose + ¢-Az 4 n?+ (l-ng)cose + c-Az
- (6) i
2 + (l-nzz)cose + bedy [n2n3(1-cose)+nlsin9+c-Ay]l-' .

ag * ng + (l—nf)cose + e°Az 8 = ns + (1-n§) cosd + c-Az
;04 (1-cose)-nzsin6+a~ Az ‘ n2n3(1-cose) +nlsin9+b- Az ']

a, = —Eg + (l-ng)cose + c-Az 8 " n§ + (l-ng) cosd + c-Az

where for simplicity we have set F = 1.

N
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It was shown in [1][3] using Lie Group Theory that given two perspective
. views at tl and tz, the eight pure parameters 315 3y cee s ag are unique,

and they can be estimated by solving a system of linear equations.
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III. COMPUTING ACTUAL MOTION PARAMETERS FROM PURE PARAMETERS

By using the rigidity constraint and the fact that a plane in 3-space
can be oriented in at most two possible directions in order to cut a circle
in an ellipsoid, we shall prove that the number of possible solutions for
the motion parameters can never exceed two aside from a scale factor for the
translation parameters. The number of solutions depends upon the multiplicity

of the singular values of the following matrix A consisting of the eight

pure parameters ai's:

~ I

a, a, a,
A = a, ag ag (7N

.37 ag 1 ]

The SVD of A is given by
r -
M
A = U A2 v o= v (8)
A3

- .

where li's are the singular values of A, and U,V are 3 x 3 orthonormal

matrices.

Let k = n% + (l—n%)cosO# c-Az; then it can be readily shown that

CIRER

A = g R + Ay

(9
Az

or ' r Ax ] [a

bc]

kKA = R <+ | Ay

42
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From (3) and (4), it can be seen that
x' x Ax [a b c] X
y'l = R vy + Ay y
z' z Az 3
aAx b x
+

x

y (10)

z

ST dag o o

R

| T

3"

If we transform the original coordinate system with the orthonormal matrix

V in (8) as depicted in Fig. 2, where (xn, Yo zn) is the new coordinate

system after transformation, we have

X Fx I
y| = vy, (i)
b z L zll 4
and
[ X' [ x' ]
y'| = v 1y - (12)
=) X

Substituting (11), (12) into (10) gives

-

o |

- - - - . N . e, . - . ;‘-;./>‘
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Fig. 2 The relationship between the (x,y,z) and
(xn,yn,zn) coordinate systems.

o r
x' x
n n
v [yt = kav |y (13)
2! 2z
| B L "

By taking the Euclidean norms of the vectors on both sides of (13),

we obtain
' ' ' T P ) T.T
[xn v zn] LA A IS0 [xn Y, zn] ViataAv [x
Ya Vo | (4
z' z
b nd a

Since V is orthonormal, VT-V on the left hand side can be replaced

by an identity matrix. Substituting (8) into (14) gives

...............................

e

{7

RE
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q

x'z +y'2 + z.z - k2 [,x' y z] VTVAUTUAVTV [ x
- n n n n n n n
Yy (15)

%n
-~ Replacing UTU in (15) by an identity matrix gives
12 02 2 2,22 2.2 2.2

: x + Ya + z, k len + len + x3zn) (16)
o
. This is the key equation that will lead us to the solution of the .
- uniqueness problem, as will be seen hereafter. l]
h In the following, we state and prove three theorems regarding the ;3

uniqueness and computation of the motion parameters given the pure parameters, f

o j and the physical characterizations of the motion in the object space for

.. different multiplicities of the singular values of the matrix A. -1
o THEOREM I

I1f the multiplicity of the singular values of A is two, e.g., kl = K

12 $ ).3, then the solution for the motion and geometrical parameters is unique

aside from a common scale factor for the translation parameters, aad

A
2 N T ~1
R Xl A ("1 s) U3 V3 ’
Ax a
y N }\—1 - 8) 03 and = W V3 .?
Az e -

where s = det(U)det(V)

Y SRS

w i3 a scale factor

ase'a

a,b,c are the parameters in (3) which is the planar equation of the

U S
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object surface at time t, 'j
;
Us,V3 are the third columns of U and V respectively. ]
Furthermore, a necessary and sufficient condition for the multiplicity of f
the singular values of A to be 2 is that the motion can be realized by _
rotating the object around the origin and then translating it along the normal -
direction of the object surface. j
ff [Proof]

?13 The two sides of (16) can be equated to a collection of positive
- .
8 values corresponding to the range of values for x, y, z and x', y', z'. Let é

d be one such value. Then we have

PRVEINA

2 2 2

- ' ' '
d " +y° 4z (17) .
and "
2,.2.2 2.2 2.2
d = kTQyx; + Aoy +A3z) (18) g

Clearly, (17) defines a sphere in the (x;, y;, z;) space, while (18)

defines an ellipsoid in the (xn’ Yo? zn) space. Since ll - kz, two of the

three principal axes of the ellipsoid are equally long. Since the object

B
oy

v L o oh e ey v
M . i ! e B Y P
[ ..,“, s et Ll A
. P B B
] i Aty Bt e

surface is assumed to be planar, the collection of the points on the

object surface that also satisfy (17) must be the circle which lies on the

intersection of the sphere and the object surface at time t, (see Fig. 3).
Because of (16), (17) and (18), all the points on this circle at time ¢
must also satisfy (18) at time €ys i.e. they must lie on the intersection
of the object surface and the ellipsoid. Due to the rigidity comstraint,
this intersection should also be a circle. But the only possibility for a

plane to cut a circle out of an ellipsoid with two of the three principal

"'l- v"-,' I., .»-: ‘.‘.;.‘
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(b) . Tne ooject surface intercepts the ellipsoid defined by
(ly) at a circular cross-section only if it is properly

oriented,
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axes equally long is that the plane be perpendicular to the major axis (the
longest one) of the ellipsoid, as depicted in Fig. 4. That is to say, there
is only one possible orientation for the object surface before the motion.
This is the key step that will lead us to the conclusion that the motion
parameters are unique, as will be seen shortly.

Note that kl (and xz) can never be_zero since were this to be true,
the ellipsoid defined by (18) would have degenerated into two parallel planes,
and there is no way the object surface can intercept two parallel planes at

a circular cross-section.

—>»N

\

xn\ !

-/— Tk
’
X

-

Fig. 4. The object surface must be perpendicular to the z_ axis
to intercapt the ellipsoid at a circular cross-section

when A=A $ k3.
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a Since, as depicted in Fig. 4, the object surface must be perpendicular =
X
) to the z, axis, and since the z, axis i{s obtained by rotating the z axis ,_'
with the orthonormal matrix V as in Fig. 2, it 1s seen that £
g
- a 0 1

b = v [} = W V3 (19)
c w ol
__:1
N where a,b,c are the parameters in (3), 'j
V, 1s the third colum of V in (8), and i
‘ =
h w i{s an arbitrary constant. 4
Substituting (19) and (8) into (9) gives 3
T T "
i R+ [ox] [0 o w] - v = kuw (20) 9

dy

Az g
T | g
Premultiply (20) by U and postmultiply (20) by V to give 3
ay B
,:1
Az
]
or ."_]
R o+ [ax|[o o w] = & r"x W %
"
Ay ; R

y ) (22)

A ]

z x3 3
b - 7-
where -
R' = ylRY (23)
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ax' Ax
ay'| = ot | ay (24)
Az'J Az
(22) gives
kxl 0 -weAx'
R' = 0 k&l -wedy' (25)
- L4 '
0 0 k&a w2z

It will be shown now that Ax' and Ay' in (25) are zero, therefore R'
is diagonal,
Since U, V and R in (23) are all orthonormal, R' is also. Taking the

inner product of the 2nd and 3rd columns of R', and equating it to zero gives
kxlw - dy' = 0 (26)

kl and k cannot be zero since were 11 or k to be zero, the lst and 2nd
columns of (25) would be zero, which contradicts the fact that R' is
orthonormal. Obviously, w cannot vanish either, otherwise, a, b and ¢ would
vanish, which contradicts (3). Therefore, (26) implies that Ay' = 0.
Similarly, -one can show‘tha: Ax' = 0. Thus, (25) is diagonal, which,

when combined with the fact that R' is orthonormal, gives the following:

ki; = +lor-l 27)
kA, - wiz' = 41 or -1 (28)

We show that k has to be positive:
From (10), we have

2' = k(a7x + agy + z) 29)




For x = 0 and y = 0, 2' = kz. Since the object must be in front of
|
the camera, z and z' are both positive, which implies that k is positive.
Since Xl is nonnegative by definition, the right hand side of (27) can
not be -1. Therefore,
-
1
k =
| 4
. and
e . 9 -
. 1
¥l R' = 1 (30)
o s
. L
. where s is either +1 or -l.
Since R' = URVY, we have det(R') = det(U)det(R)det(V) = det(U)det (V).
. Thus a = det(U)de:(V). (28) gives the following: = 1
A -]
pz' = Wl - (31)
1 1
- From (24), (31) and the fact that Ax' = Ay' = 0, we have -
[ . ¥
" Ax Ax' 0 )
(e 4
Ay = U |ay' = U - 0 —
. 1 A 9
E Az Az' w 1(r3' -3) .
. 1 ]
7.3
=y (=-3U (32)
N 3 ‘?
(19), (20) and (32) imply that i
1
.1 R
R = 7«1 A - Ax [a b c] :
oy ) .

Az

P T A R Y SR, als > 4 PP R W) - " - g S e
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A
-1 3 T
- A\[A - (xz - 8) Uy V, (33)

In the following, it will be shown that the solutions for the rotation
matrix R in (33) i3 unique, and that aside from a scaling factor, the trans-
lation parameters Ax, Ay, 4z in (32) and the geometrical parameters a, b, ¢
in (19) are also unique,

The first thing to show is that, once A is given, 03 is fixed except

for the sign. From (8),
T 2
AA Uy =230, (34)
Let Q be any orthonormal eigenvector matrix of A-Ar. Then
o 1
2
M
a Al =qT A2 Q (35)
2
)
- e
From (34) and (35), we have
[ 22 '
M
T 2 2
Q A,y Q-2 1 U, 0
2
s Ay

or

P U3 s 0
where

2 .2 ]
Ars
4 ,,T 2 T 2,2
P = AA X3I = Q kl ks Q (36)
0

s T e T PR S S S U .

PO SN
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(36) is nonzero. Also, P is fixed once A is given since P = AAT - AZI.

3
Therefore, U3 is fixed except for the sign.
The next thing to prove is that (33) is unique, i.e.

A

3 T
(xl - 8) U3V3 Ax [a b c]
8y
Az

is unique once A is given. Two cases are to be discussed. The first is
when X3 $ 0. In this case, s = sgn(det(A)) since A = U A VT and thus

s = det(U)det(V) = (11k2k3)-1det(A) = sgn(det(A)). Thereforé, given A,

8 is fixed. The next thing to prove is that U3V§ in (33) is unique.

Since U3 and V3 are fixed except for the sign, all one has to show

is that when v3 changes its sign, U, must also.

3
From (8) we have

AV = UA = ["1“1 2,0, 1303]

thus

A V3 = X3U3

Since A and X3 are fixed given two perspective views, we see that when

v3 changes its sign, 03 must also. Therefore, USV§ has fixed sign. We have

thus proved that the product

Ax [a b c]
Ay
Az

and therefore R in (33) are all unique.

For the second case for which xa = 0, we have from (33) that

e e St b ta o PRI R P B SN TS DU NI ISP S VI LY T WG VU SPUE ST S WL P W

SECRI SUNRITRIICH W Rss
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B 8% DS AR N
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-xl

A + det(U) - Uy « det(V) - v§ (37)

1f U3 changes its sign, det(U) will also. Thus the sign of det(U) U3 in
(37) remains unchanged. Similarly, the sign of det(V) Vg also is fixed when
V3 changes its sign. Therefore, the uniqueness of (37) is not shaken by

the ambiguity of the signs of U3 and V3.

Since A;A have double eigenvalues, the eigeanvectors V1 and V2 that
correspond to the multiple eigenvalues 11 (= xz) are orthonormal to each
other but may be anywhere in a certain fixed plane perpendicular to V3 Note
that we are now interpreting eigenvectors geometrically as some vectors in
3-space.) If the order of V1 and V2 on the plane are interchanged while
keeping V3 fixed, the sign of det(V) will change. We are now to prove that
when this does happen, the sign of det(U) will also change, thereby keeping
(37) fixed. It is obvious from (8) that

-1
(11 A) Vl = U1

-1
(hl A) V2 Uz

Since A, and A are fixed, when V1 and V, are interchanged, U, and U

1 2 1 2
will also. Therefore, when det(V) changes sign, det(U) will also. Thus for

the case when Xa = 0, the product

Ax [a b c]
Ay

Az

as well as R in (33) are unique,

| S
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We are now to prove that a necessary condition for xl = Xz # X3 is

that the translation vector Ax is parallel to the normal direction
ay
Az

of the object surface at time :2.

Since before the motion, i.e. at tl’ a is normal to the object
¢ a
surface, this vector is rotated by R at time t2 and becomes R | Db
c
It is only necessary to prove that there exists a scalar q such that
r -
ax a
Ay = qR b (38)
Az c
- -
From (19), (32), (33) and (38), we have
A A
-1.3 - <L, 3. T
()'1 8) U3 q[k1 A (k1 s) U3 V3] w V3
-1 l
=qw\ AV, -qw (-I =8) U,V 3 v, (39)
But ,
A=) U VT + A, U VT +A, U VT thus A V, in (39) becomes
1 1 22 2 373 3 3
AV, =AU, VIV, 4+ AU, VSV, + AU, VSV
3 1"'1°'1 "3 2°2 2 '3 33 '3 '3
= o + 0 + x3U3 (40)
Substituting (40) into (39) gives
_1 X A A

3 _ - 3__3 -
( s) U3 qw ( l *1 + s) U3 qws U3 .
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-2 -1,
Therefore, if we take q as w “s Cx— - 8), then (38) will be satisfied. We
1

have thus proved that the necessary condition for Al = XZ $ A3 is that the
motion can be realized by first rotating the object around an axis passing
through the origin, and then translating it along the normal direction of
the object surface at time tz.
In the proof of Theorem II, it will be shown that if the translation
is along the normal direction of the object surface at tz, then the singular

values of A can not be all distinct. This fact, together with Theorem III,

provide the sufficiency part. Q.E.D.

THEOREM II

If the singular values of A are all distinct, e.g., Xl > Az > A3,
then there are exactly two solutions for the motion and geometrical param-
eters aside from a scale factor for the translation and geometrical param-

eters, and that

o 0 8
R = vl o 1 o |V
-s8 O sa

w———— - T

-3

.
—

.
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2 2 g 2
A8 - A
1 2
where 6 = ¢ 3 3
AZ = A
|I 2 3
2
“ Al + sA36
. ®T a6
,
) B= +y1- o? :
s = det(U)det(V)
(in each of the two solutions, sgn(B8) =-sgn(§).)
ii Furthermore, a necessary and sufficient condition for distinct singular
values is that the motion can be decomposed into rotation around an axis
= through the origin followed by translation along a direction different from
.' the normal direction of the object surface at time tz.
- (Proof]:
Since the three singular values are distinct, the three principal
r! axes of the ellipsoid defined by (18) are of different lengths. By using
the same argument as in Theorem I, the object surface at tl must be oriented
e in such a way that it cuts a circle out of this ellipsoid. It is easy to
verify using basic analytical geometry that a piane can be oriented in only
two possible directions (see Fig. 5) in order to cut a circle out of an
a: . ellipsoid whose three principal axes are of different lengths.Since Al > Az > A3
,the longest principal axis is aligned with z, axis,and the vector normal to
the object surface is
s 2 _,2\ 4
E w Al B x2
h 0|, where § = ${ ~—>—3>
2 2
Ay = A3
' 1 o .
' inthe (x , y , z ) coordinate systemand w is some constant.
N
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Fig., S

fhe object surlace can be oriented in exactly two possibdle

directions in order to intercept an ellipsoid defined by (1#

at a circular cross-section when A,> A)A, .

)

o
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Since, as shown in Fig. Z,the(xn, Vo’ zn) axes are obtained by rotating ]

the (x, y, 2) axes with the orthonormal matrix V, we see that

a §
b = wV 0 (41)
c 1

where w is some constant. Substituting (41) into (9) gives

Calae LT L atacllaad ALIC L

Ax .

T T -

kKA = KUAVE = R+w |ay [s 0 1] v (42) ]

Az ]

1

A

Premultiplying (42) by T and postmultiplying (42) by V give j
Ax ?

1

o= RV + wtt fayffe 0 1] VT 1

Az :

Thus b
ox! :

R = ka- fay'| s 0 1] (43)

Az’ - 1

'

vhere R’ 80T R V (44) R
Ax' ax ‘1

o B |y (45) )

Az' Az i

o

From (43), ) .
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rkxl-G-Ax' 0 -4Ax'
R' = A kxz -4y' (46)
-5'A2' 0 kk3-AZ'
3 L

Since U, R and V are orthonormal, (46) implies that R' is also orthonormal.

Taking the inner product of columns 2 and 3 and equating the result to zero

gives
kxz - Ay' = O 47)

Since A 2 Ay > A33-0, we have A, > 0. Therefore, (47) implies that

2
Ay' = 0. Thus (46) becomes
kAl-G-Ax' 0 -px'
R' = 0 kA, 0 (48)
-84z 0 khy-02’ '

The normality of column 2 implies that kAz = + 1. But since k > 0 and
12 > 0, we have kAz al,orks= 1/12. Furthermore, from the fact that
columms 1 and 3, as well as rows 1 and 3 of R' are mutually orthogonal, and

that the norms of the rows and columns of R' are unity, it can be shown that

R' = 0 1 0 (49)

A
where a i'xk - §:Ax' = s(kx3 - a2') (50)
2 )
B = =Ax' = sg§-pz' = :t:,/l - a® (51)
s = det(U)det(V) (52)
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Since U and V are orthonormal, from (52), s is either +1 or -1.

be shown that although det(U) and det(V) may be +1 or -1 for a particular A,

s is unique once A is given.

Recall that Ul’ U2 and U3 are the eigenvectors of AA: corresponding to

2

eigenvalues Ai, 12, and A§ respectively. Since Al’ Az and A3 are distinct,

Ul’ UZ’ U3, Vl, V2 and V3 are all fixed except for the signs. However, as

was seen in the proof of Theorem I, we have

2-26

It is to

Therefore, when Ul changes its sign, Vi will also, where 1 = 1, 2, 3.

Hence the sign of det(U)det(V) remains fixed. Thus, s is unique.

From (50) and (51), we have

3
G(Q"’ '—) - B
. Az

Cancelling 8 in (53) and (54) gives

2
XI*SABG

2
xz(l + §7)
where =

From (50) and (51), and the fact that Ay' = 0, we have

(53)

(54)
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3 Ax' -8 g
1
ay' | = 0 (55) !
Ay
Az' = - s
LA J
From (45), (47) and (55),
A ' [ T
x Ax -B
Ay | = viy ay' - vl Y
, A3
Az Az ;.‘1-2- - s ]
-1 Xy
= w [-B U, + (x; - sq@) U3] (56)

From (44) and (49),

R = U 0 1 0 v (57)

From (41), (56), (57), and the fact that s is fixed, we see that there
are exactly two solutions aside from a scaling factor for the translation
and geometrical parameters.

It is to be shown that a necessary and sufficient condition for the
singular values to be distinct is that the translation vector is not aligned
with the normal direction of the object surface after rotation (or at time
cz). The sufficiency part was proved in Theorem I. The necessity part is
proved by contradiction. We shall show that if the translation vector is
along the normal direction of the object surface at €y then the singular
values caanot be distinct,

1t was indicated in the proof of Theorem I that the normal direction
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of the object surface at £, is aligned with R| b |. Suppose| Ay| is
a [ Az
parallel to R|b |, then
c
Ax a
- ay| = nRrR | b (58)
Az c
= for some constant h, With (41), (56), (57) and (58), we have
-8 @ 0 a §
r,. Wiy 0 =hu|l o 1 o |viv]o
. A
=3 . s -.sg O sa 1
)
or
. = -3 ] o 0 ) 8
0 = wh 0 1 0 0
_7‘_3 - sa -sg 0 sy 1
L A2 d
L
A which implies that
P -8 = wh (x - 8§ +8) (59)
. and
Ay
. I"W"'h(*‘ﬁ'é"'w) (60)
1 2
: Substituting (50) and (51) into (59) and (60) gives
i Ax' - whs xl
[ 1 + wh(l + 65) ‘x; (61)
and
L
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A
Az' = B 2 (62)
1 +wh(l + §°) "2
But from (51),
-Ax' = g§ Az (63)

Substituting (61) and (62) into (63) gives

A

whé Mo wh§

1+ wh(l + §2) 2 1 + wh(l + &°

-S)\
A

3

2

which implies that Al = -sk3. Since Al and A3 are nonnegative by definition,
we have Al = A3. But this contradicts the assumption that Al # As. There-

fore, the necessity part is proved. Q.E.D.

Theorem III

The necessary and sufficient condition for the multiplicity for the
singular values of A to be three, i.e., Al - Az = 13, is that the motion consist
of rotation around an axis through the origin only, i.e. Ax = Ay = Az = O.

Also, the rotation matrix is unique, and R = XIIA. The object surface can

be anywhers.
Proof
If Ay = X, = Ay, then (16) gives

2 2,2 .2 2

2 2 2 64
xﬁ + Ya + z; = k xl(xn + Yy + zn) (64)

Siance any 3-D rigid body motion can be decomposed into rotation followed
by translation, we first rotate the object such that (xn,yn,zn) becomes

(xgsYgs2"",). Then we carry out the translation which changes (xqs y:, z))
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[] ]
into (x;, Yo’ zn)° That is,
I-x"-‘ b4
n n
Yal = R |y, (65)
3 2
and
ﬁ;- xg ax'
sl = |+ | 6
zl; z;; az'
where R', Ax', Ay' and Az' are the motion parameters in the (xn, Yo» zn)
space as defined by (23) and (24). (65) gives
2 2 2 T
eyt et - [xn Yy zn] R'F' [ x)
Ya
z
n
2 2 2
= x ¢y +z
This, when combined with (66), gives
x: * yﬁ * z: = (x - ax? + (yq = ay? (2} - az")?
(67)
From (64) and (67), we have
2 2- '2 2 2- '2 2 2- '2 - Voy! oy!?
(k A l)xn + (k M l)yn + (k72 l)zn (28x'-x} + 24y" Ya
T VAL i) I L (68)

Since (68) is true for all x;, y; and z;, by equating the coefficients of




...........

B ER B
ey

-;

2-31

Lol ;\'1
XY RV PR

,.,.—.
B -1

L

and

kA\; = 1 ork =

Therefore, from (24),

x = Ay = Az = O,

Then, (9) gives

-1

R+0 = kA, or R = Al

A

Therefore, we ahve proved that if Al = Az = X3, then the motion consists

of rotation around an axis through the origin only, and the solution for

the rotation matrix is unique. The object surface can be anywhere. This

proves the necessity part. 0
We now proceed to prove the sufficiency part. If the motion consists

of rotation around an axis through the origin only, i.e., Ax = Ay = Ax = 0, ?1

then from (9), ‘i

A = k"R (69) 5

-}
Let UA =R, VA = T and AA =k I, Then (69) becomes

T
A = UA AA VA

A v (70)
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Since UA and VA are orthonormal, (70) gives the SVD of A, with singular

values k‘l, xt

and k-l. Then from the fact that the singular values of
any matrix are unique, we see that A has three identical singular values.

This proves the sufficiency part. Q.E.D.

IV. CONCLUSIONS

Three theorems have been stated and proved regarding the uniqueness
and the computation of the motion parameters, and the physical descriptions
and classifications of the actual three-dimensional motion for a rigid planar
patch., The motion parameters are unique aside from a scale factor for the
translation parameters if the singular values of the 3 x 3 matrix consisting
of the 8 pure parameters are not all distinct; otherwise, the aumber of
solutions is two. The distinction between the cases of multiplicity 1l and 2
lies in whether or not the translation vector coincides with the normal
direction of the object surface at €. 1f there is no translation at all,
then the singular values are all identical. In any case, once the eight
pure parameters are estimated, which can be done by solving a system of
linear equations, computing the singular value decomposition of a 3 x 3
matrix is all th;t it takes to obtain the 3-D motion parameters and the

directional cosines of the normal direction of the planar patch.
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Estimating Three-Dimensional Motion Parameters
of a Rigid Planar Patch, III: Finite Point Correspondences

and the Three=-View Problem

R, Y. Tsai and T. S. Huang

Coordinated Science laboratory
University of Illinois
Urbana, Illinois 61801

Two results are presented in this paper. First, it is shown

1
that in estimating three-~dimensional motion of a rigid planar patch, the
eight pure parameters used in [1l] and [2] are uniquely determined from

‘m the image correspondences of four points, no three colinear, and can be 3
estimated by solving a set of linear equations. The second result con- i
cerns the three-view problem. 1t is proved that given four image point S

~ correspondences in three perspective views of a planar patch undergoing E

50 general three-dimensional rigid body motion, the number of solutions for
the motion parameters is one, as opposed to two [2] when only two perspec-

tive views are given.
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< I. Introduction

!! The interest in motion estimation using image sequences has been growing

. rapidly in many fields of research in the past few years. The efforts in the

| 70's were primarily focused upon two-dimensional motion estimation [11-18]. J
Recently, attention has been gradually shifted toward three~dimensional motion

estimation [1-10, 19-21]. The difference between 2-D and 3-D motion estimation

-
A

L is not just the degree of difficulty or complexity in solving the motion equations. ;
The issues of uniqueness, the minimum information required to ensure uniqueness
and the 3-D structure interpretation, which are not present in the study of 2-D
motion estimation, make the study of 3-D motion estimation more challenging and ;
interesting., Furthermore, due to the nonlinearity an& the increase of the ;?

number of unknowns of the motion equations for 3-D motion estimation, the 1

aa development of more clever and efficient ways of solving the motion equations B
. becomes also extremely important. T
fj For the case of estimating 3-D motion of rigid curved sﬁrfaces. [3] presen- i;
= ted an efficient algorithm for determining the motion parameters exactly without i

’ having to solve nonlinear equations, and was the first to analyze the problem
s of how many image point correspondences are required to ensure the uniqueness
of motion parameters.

For the case of 3-D motion estimation of a rigid planar patch, a brief
introduction is given in Sec. II. In this paper, it is proved that the eight
;; pure parameters [1,2] in the two-view problem are unique given the image
correspondences of four points no three colinear, and can be estimated by
solving & set of linear equations. For the three-view problem, it is proved
ij that given four image point correspondences in three (distinct) perspective

views, the solutions for the motion parameters are unique.




11, The Eight Pure Parameters and the A Matrix

PRy |

The basic geometry of the problem considered in [1] and [2] is

repeated here in Figure 1., Consider two frames at time tl and tz (tl < tz).

JRCENC &

For a particular point P on the object, let

(x,¥,2) = object-space coordinates of a point P at time tl.
(x',y',2') = object-space coordinates of P at time t,.
X,Y) = imsge-space coordinates of P at ¢

XL

1.
(X',Y') = image-space coordinates of P at t

tarid

2.

al

It is obvious from Figure 1 that

X == Y=--1 }
X'= -’z‘-:- Y' = % (0) j
where the focal length is normalized to one for convenience. It was shown 1
in [1] and [2] that for a rigid planar patch undergoing 3-D motion (a rota-
tion with an angle O around an axis through the origin with directional 1
cosines Nys D, Dgy followed by a translation with translation vector (Ax, ‘
Ay,Az)) j
y'| =R |y | + |8y j
z' z Az Q)

where R is a 3 x 3 orthonormal matrix of the first kind
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A

X
(X,Y) = Image-space
coordinates of the
point P at time t;

(AX,AY)=Image-
space shifts from
time t; to t, for
the point P

Y//
(X,Y")

=Image-space
coordinates of the
point P at time t;

Object\Space

(x,y,2) = Object space
coordinates of a physical
point P on the object

at time fl

(x’y’, 2’ )= Object-space
y; coordinates of the same

point P at time t; rp-108€

Fig. 1 Basic geometry for three-
dinensional motion
estimation.
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- 2 2

“ n, +(1-n1 )cos® nlnz (l-colO)-nsoinO n1n3(1-c000)+n2un0

. - 2 - 2 - -

;;- R nln2 (1-cotO)+n3sin0 n, +(1 n, )cos8 n2n3 (l-cos@) nlcino

- L_'nln3 (1=cos@) -nzsino n,n, (l-cosO)-mls in@ n32+ (1-n32)coco Q)
=

the image-space coordinates before and after the motion are related by

341( + ‘SY + .6 _
a7x + a8Y + 1 3)

Y'=

where the ‘1" are such that if we define R to be such that

k= n32 + (1-n32)cose + ¢.AZ _ ::].
and let ax + by + ¢z = 1 be the equation describing the object surface 1
before motion (at tl), then ’ \
u— pu— Gy 4
r‘l s, a, Ax [a b ¢]
A -1
A= 8, 3 s, | =k R+ Ay | ?
_.7 %3 1_ LA' _J %)
\. /
The eight li'l in A are called the pure parameters [l]. Given A, the
actual motion parameters can be obtained by simply computing the SVD of
the matrix A and the number of solutions for the motion parameters is S

either one or two depending on the multiplicity of singular values of A [2].
As for the uniqueness of the pure parameters given the image motiom, it

was shown either using Lie Group Theory [l] or elementary algebra [20] -l
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that given the image point correspondences of the whole plane, the pure
parameters are unique. It is the purpose of Section III to show that

it takes only four image point correspondences, no three colinear to deter-
mine the pure parameters uniquely. The algebraic proof in SectionIII.1

is direct in the sense that the coefficient matrix of the set of linear
equations that the esight pure parameters must satisfy given four image

point correspondences is proved to be nonsingular, which directly leads

to the conclusion on the uniqueness of the pure parameters.: The geometrical
proof in Section III.2 is indirect in the sense that the pure parameters

are not directly shown to be unique, but rather the image point correspon-
dences of the whole image plane are proved to be fixed given four image
point correspondences. In order to ultimately prove that the eight pure
parameters are unique, two more results are needed. [1] and {[20] proved
that given the image point correspondences of the whole plane, the eight
pure parameters are unique if the 3 x 3 A matrix is nonsingular. This is
the first result needed. The second one is Lemma II for the algebraic proof
in Section III.l. With these two facts and the geometrical proof in Section
III.2, one can conclude that the eight pure parameters are unique given

four image point correspondences, noncolinear both before and after the

motion.
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I1I.1 Algebraic Proof for the Uniqueness of the Eight Pure Parameters

Given Four Image Point Correspondences.

From (3), we have

KN [ x, ]
%2 T
M RN EA
: T,
. .
— .
x,'
Y,
e d
where B X, Y, 1 0 0 0 -xlxl' -lelﬁ
0 0 o X Y 1 -xy -1,7, "
X, Y, 1 0 0 0 KL hXK
L 0 0 6o X Y, 1 Xy Y,Y,'
X, Y, 1 o o 0 X X' 1%,
0 0 o x, ¥, 1 Xy, 1,7,
X, Yy, 1 o 0 0 -xX,' Y%,
|0 0 o x Yy 1 Xy’ 1Y

D)

®)




In order to prove that given four image point correspondences, the pure

'P parameters are unique, we take the following approach. Let (xi"Yi') be !

E.:, transformed from (xi’Yi)’ i=0,..., 3, with some reference pure para- 1

= meters a'i(.o)o' such that &

, (o) (©) () B

T' g =1 Kt Yt g

i (o0} () B

. a, xi + ag Yi +1 i

‘ %

; (©)y ", 4 (0 (©) 2
ﬁ g "4 xif+a5 Y_1+‘6

i (o) (o)

E a, xi + ag Yi +1 N g

=

. Then the elements of the matrix M in (6) contain the image coordinates :-',3

4112 3

> before motion (i.e., Xis' and Yis') and the reference pure paramters aio)'s. i

i Let A, be defined as | -

LS

’ g o

) (o) (0) (o) .

b " *2 '3 |

| ) ©) ©) ©) o

! Ao a, 8, ' ¢

Ly )

2, (0 4@ @)

“' j - <y “:

Py -3

L l;..q

. It is to be shown that if Ao containing the reference pure parameters is "1

. =

b nonsingular, then give four image point correspondences with no three co- .j

'h linear, (5) yields only one set of solutions for the a 1'8, namely the refer- 4

ence pure parameters .{(o).‘. R

l In order to simplify the analysis, let the origin of the image :I;?

X

b coordinate system at t1 be located at one of the image points, say (xo.Yo)» -

st £,. It will be shown at the end of this section why this simplification 3

2 ;

I j'.l

»

@ >

| 2

| el — ——— e
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does not result .. any loss of generality. i
By setting xo and Yo in (3) and (7) to zero, we have -J
' - -a ©) i
.Xo a3 13 5
''ea =2 @ 7
: To "% =% ®) g
~ with (9), the number of unknowns now becomes six. Let G be defined as ;Z'}
& 2
q
% (e, o o :
= R
b G= f.l fz fa A AH 1
¥ 4 4, 4, (10)
oy =
wvhere e
ol
- - 2
Lok X .
A g
Hs Yl Yz Y3
1 1 1 (11) ]
- — |
Substituting (9), (10) and (11) into (5) gives R
81 ;
) ¥
af
%
D = B
ag |
& 4
s (12)
) .
i-.!
e e e e e e e e e daeaesaead
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o
where | — ]
! dx, 4y, 0 0 oX, ey, :
. ]
f-: dzxz d2Y2 0 0 czxz °2Y2 X
] A
& 4% 4% 0 0 % 4% ]
L D ﬁ -
I 0 0 e L T S o B L 3
A -
0 0 Q% Y L% LY, ]
0 0 d X, dy¥, £.X, £3Y'3—J (13) B
M — -_— - | 7
4
(©) (o) ©) A
Xl Yl 8, a, -8 ‘]
~4
©), () ©) .
L % 2" "8g " -8y :
n_:-. | . — 3
| x3 Y3 * \-'j
x 81 = — .
‘r ’ @ ) .. © ] 5
ﬁ o4 % %7 "% 5
©). © . © .
L % s 8 % -
If::'/ o — :
5 Y (14) K
h— o— .'1
— pra——— | ) ]
Note that B does not contain the unknowns .1"’ 1=1,2,4,5,7,8. Therefore, -
1£ D is nonsingular, the solution for the unknowns, '1"2"4"5"7"8’ is
unique. Lemma I, below, gives the exact conditions for D to be singular.
-—1
1
E
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Lemma I:

Let D be given by (13). Then

_det D) = d1d2d3 det (Ao) det (H) (Xle-szl) (XzYa-XsYZ) (X3Y1-XIY3)

where

Ao is defined in (8)
H is defined in (11)

dl,dz,d3 are given in (10)

[Proof] The cofactor of the (ll)th element of (13) is given by

szz 0 0 | ezxz °2Y2
d3Y3 0 0 ¢3x3 03Y3
cof (dlxl) = 0 dlxl dl‘ll £1x1 lel
o d X, d,Y, fzxé £,Y,
0 d3x3 d3Y3 £3x3 f3Y3
)

After some straightforward derivations, the above becomes

cof (dlxl) = d2d3 (x2Y3-x3Y2) [02 (d3f 1-d 1£3)Y3-e3 (dzfl-dlf.z )Yzl
Similarly,

cof (dzxz) = d1d3 (x1!3-x3Y1) [el (413£2 -el2 £3)Y3-e3 (dlf2 'dzfl)Yll

and cof(dsxa) = dzdl(szl-Xle)[02(d1f3-d3f1)Y1-e1(d2£3-d3f2)Y2]
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Therefore, 2
1

det(D) = dlxlcof(dlxl)-dzxzcof(d2x2)+d3x3cof(d3X3) %

= 4ydpdsley @ Fpmdyf ) Bo¥yoXa¥y) (Ra¥y X, ¥3) (X, ¥y KpYy) -

- - - - - -']

€3 (41£37d5%)) R ¥)-R,¥)) By ¥3-X5Y) ) (XY =X, ¥,) 4

€1 @)F505%)) BTy XY )) (¥ XaY)) (Ry¥y K Y) ~

= dy9yd3le) (@)F5mdst ) me, (455458 )4e (4, £, )] £

X ¥57XpY)) (¥ 37XqY,) (Ry¥y X, ¥q) -

= d,d,d;.det (A) (R, ¥)~X,¥)) (X ¥3X,Y, ) (K ¥, X, ¥,) &

o.E.D. ;:.-‘:

It is obvious from Lemma I that if dy» d, and 4, are never zero :i

(to be shown later), the D is singular and only {f ]
| y

(1) det(Ao) =0 (i.e., Ao is singular) j

(11) det(H) =0 (i.e., point 1, 2 and 3 are colinear)
(14i1) Xin-szl = 0 (i.e., point 0, 1 and 2 are colinear)
iv) szs-anz = 0 (1.e., point 0, 2 and 3 are colinear)
) stl-lea =0 (1.e., point O, 1l and 3 are colinear)

Note that (ii), (iii), (iv) and (v) exhaust all the possibilities for any

and d

three among the four points to be colinear. We now show that dl’ dz 3

are strictly positive.
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It was shown in [2] that
g ﬂ 1r -;r
X x4
yi' - kvo ¥y » 1=1,2,3 (15)
'
% el
From (13),
' - (o) (o)
z, lta(a7 x:l + ‘8 vy + zi)
Substituting (o) into the above gives
' (o) (0)
zg' =k (a2 Xy gz Y, +2y)
or
©) ©) z,
a, %, +agt Y, 41 7 k ,1=1,2,3 (16)

Since the object points must be in front of the camera, z,' > 1 (the normalized

i

focal length) and z, > 1. [2] shows that ko < 0 corresponds to the case ﬁhat

i
the object points move to the back of the camera. ko obviously cannot be zero,
otherwise (15) would imply that all the object points move to the origin.
Therefore, from (16),

z ]
e, xi+'8 Y, +1 z k°>0,1 1, 2, 3.

4 1

From (10),

e a ©) (o) -
d, =2, +ag Y, +1,4=1,2,3.

R BTSN |

y

Y

K
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Thus

d1 >0 fori=1, 2, 3.

Lemma that the restriction on Ao being nonsingular need not be imposed 1if

none of the three points are colinear both before and after the motion.
Lemna II:

Given the fact that the image points before motion (at tl) are not
colinear (or equivalently, at least three points are noncolinear), then the

following three statements are equivalent;

) Ao i{s sungular

(i) The object surface passes through the origin at tz.
(11L) All the image points after motion (at tz) are colinear.

[Proof] We prove that (i) iff (i1) and (1i) iff (i11).

(1) = (11)]
Let the SVD of Ao be given by

r -

where 11. 12 and xa are the singular values of Ao' If A 1is singular, then

one of the singular values must be zero, since from (17) we have

P T T—— ha s vt isas ShTe shbdee SnAsie i R A hadia T a e
T T G T U . : IV P . R .
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We have proved that D in (12) is nonsingular if, and only if, Ao is nonsingular

@ . and no three points among the four are colinear. It is shown in the following

an
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det(a ) = det (V) k112>-3 det (V)

J

and therefore, if det (Ao) = 0, then one of the A in' must be zero. Substi-

tuting (17) into (15) gives 1
S * "1 } %
z . T
iy
z' A 2

or

P
%
e
[
]
-1 O

q.
[}
”
>
<3

<
ol

DR
]
"8

r
L
[
1
{
L
Lo dlb

[ ]
07"'
>

N
N<
«
=) |

A, V.13 (18)

373 %
— - T
wvhere 13
x" x' -3
¥
ool 8 v
-4
z" z' .‘T:
— . ]

X
s & y (19) .
4
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Vj ﬁ the ith column of Vv, = 1,2,3. Since UT is orthonormal, (19)

can be regarded as a rotation of the object-space coordinate system around

an axis through the origin at time t From the fact established earlier

2.
that one of the lis' must be zero if A° is singular, we see from (18) that
by rotating the coordinate system around an axis through the origin, the

object surface coincides either with the x''y" plane or x'z' plane or y"z"

plane. This implies that before rotating the coordinate system using (19),

the object surface must be passing through the origin.

(1) === {1)]

Since the object surface passes through the origin at tz, by

assumption, (18) becomes

pe - _ T
0 M vy 1‘1
T
0 =k xz v2 J
T
0 ) an Vs J_ (20)

e o

at the origin. Were Ao to be nonsingular, 11, Az and &3 would be nonzero.

Then (20) would give

N E
T
0 V1
0] = va I =V or
T
0 v
e and s 3 —J
-y - r - -
rb r; x no[
T
v 0 = 0 = J or J = y = 0
0 0 z 0

¢ o SR |

W,




......

which implies that the object surface at t, passes through the origin.
The there exists &, B € R such that
z=ax+By

From Equation (0) and the above,

z=a0Xz+5Yz2

aX+ByY=1

which implies that all the image points are colinear at tl’ contradicting

the premise of the lemma. Thus Ao has to be singular.

[(1i1) ==d(11)]

From (iii), there exists &, B — R such that

Y'=aX'+8

From Equation (0) and the asbove,

or ax' -y +p8z' =0, which implies (ii)

id
[ (41)mmmD(111)]

From (ii1), there exists a, 8 € R such that

e

=y 8
"A.‘“

P . e
| SP-4 P




zedx+PfysdXz+BY2
or

aX+8yYs=1
wvhich implies (iii).
* End of Proof for Lemma II *

Up to this point, we have proved that given four image point '
correspondences no three points colinear both before and after the motiom,
the pure parameters are unique, if the origin of the image coordinate
system coincides with one of the image points at t,e It is shown now
that the latter assumption does not cause any loss of generality.

First, we shall show that given four image point correspondences
in two frames, one can derive from this the image correspondences of the
same four object points in two frames taken by the camera in the same posi-
tion, but oriented differently such that one of the object points coincides
with the'bptical axis, i.e., the z axis. Since it has been shown earlier
that the pure parameters are unique given four image point correspondences
with one of the image point at frame 1 at the origin, we see that the 3 x 3
matrix containing the pure parameters for this new configuration designated
as A,, is unique. Next, we shall show that the A matrix for the original
configuration is similar to A,, and can be determined uniquely from A,.

The proof would then be completed. Now we furnish the details.

Since rotating the camera is equivalent to rotating the object
points, we now look for a rotation matrix Ro' which can rotate the point

(xo, yo. zo) to the z axis, i.e.,

e m et T T e e ey e e 0 e e e Al me s lemm et LR Wy . AL s " a a
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Then, from (21)

where @ is some constant.

Let Roi

be the ith column of Ro’ i=1,2,3.

A
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2 <k

vhere s = (xo2 + Yo + 1) “and Rbl’ Ro2 are two arbitrary columm vectors

such that Rb is orthonormal. Note that although R° is not unique, any
arbitrary choice of R.o will lead to the desired conclusion, as to be seen
later.

It is to be shown that the image coordinates of the four points
at tl and tz for the new configuration (sll the points are rotated by Ro)

can be derived from the image coordinates for the original configuration.

Let (xni’ Yai? zni) be the object coordinates of the ith point
after being rotated with Rb and (xni’ yni) be its image corrdinates. Then

romsms —1 r— quan—y L r =

1
T ol
xhi x5 Rol * ~f
= T = T '
Yni R Yy Ro2 Yy
2 z sX sY s z
el |t L ° ° - Li
— — - —p— ?
T L
Rol J zi -
- T 4 T
sz J where . J Yy S
-4
8[X.¥a1] J z
| 8lXp¥otl J | 12 o
N
Thus i " T 5 &
ni ol
ﬁ -»1
ni z4 l[xoYol J 2
-
T =1 T o -
i} Rbl J z, i} R°1 J
-1 '
l[xoyoll Jz, '[xoYoll J (23)




figuration can be determined directly from those for the original configuration.

-----------
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N
where i
in/zi X ?
A
) = =
J Yi/z, Yy
R L1 ]
Similarly,
R T g
Yni - 02
[ §
n[xoYol.] J . ’ (24)
and
T "
I S
al [] ' "
I[X° Yo 1] J (25)
T "
I P
ni ] ' "
s[X° Yo 1] J 26) "
where B
. {
o X3
P":.‘ A
P 3 ] -1
. =Y ;
l.:;: .
e 1
& -~ -
[ 5
o "
From (23) - (26), we see that xn!.' Yoo xni:. Yni' are functions of X:» Yt’
o g
T xi'. Yi' only. Therefore, the image point correspondences for the new con- R
Sed

| W
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‘1“'.. L :[.:.«. Yaewrans
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27)

]
P
Lotente
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- "! - -
*a *a
' - T
Ya k Ro AR o Ya
’n' %a (29)
k -l - -l
Since it was proved earlier in this section that the pure parameters are
unique given four image point correspondences with one of the point at the
orig:Ln,' An is unique. Therefore, comparing (27) and (29),
«ar T
An Ro A Ro
or
A=R A RT (30)
o“n’o :

Although Ro in (22) is not unique, A is still unique since for any arbitrary
choice of Ro in (22) (Note that different Ro would result in a different An),
(30) is the necessary condition for all possible A'S. Therefore, the pure
parameters for the original configuration are unique.

We have proved that given four imsge point correspondences, no three
image points colinear both before and after the motion, the pure parameters

are unique.

..................
----------
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II1.2 Geometrical Proof for the Uniqueness of the Point Correspondences

of the Whole Image Plane Given Four Point Correspondences

It is worth noting that the geometrical proof presented in this
section does not lead to the conclusion on the uniqueness of the pure para-
meters directly. As explained at the end of Section II, it takes Lemma II
in Section III.l and the results in [1][20] to complete the proof.

It is to be proved that given the correspondences of four image
points in two perspective views no three colinear, the image correspondence
of any other point can be determined uniquely. In particular, let A, B,

C, D and E be five arbitrary points in frame 1, such that no three are
colinear, and let A', B', C', D' be the given corresponding points of A,
By, C, D in frame 2, as depicted in Figure 2. We would like to show that

the corresponding point E' of E in frame 2 is uniquely determined.

OEl

Frame 1 (at t;) Frame 2 (at t3) r-rien

Figure 2 Five point correspondences in two perspective views,
It is easy to see that if a set of points in the image space are

colinear, the corresponding points on the planar patch in the object space

e A
2rats e Thad Al
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Lo e
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must also be colinear and vise versa. In fact, let (xi’Yi)’ i=1, ...,

:

.

pl n, be the image coordinates of n colinear points on the image plane and
o

e

(xi,yi,zi). i=1, ...,n, be the corresponding points on the planar patch.

Then there exist a, b ¢ R such that

‘! X =aY +b

i i

Substituting (o) into the above gives

F x, = ay, + bzi ) (31)

[ 2 A
it

which indicates that the object points are on a plane passing through the

origin. Since A, B, C, D are not colinear, from Lemma II of Section III.l,

i B

the object surface cannot pass through the origin. Therefore, the object

surface must lie on the intersection of the object surface and the plane

A

described by (21). Thus, the object points must be colinear. The converse

is obviously true since we can regard the object surface as the image plane

and vise versa and then repeat the above argument.

Next, it is to be shown that given the correspondences of three

colinear points, the correspondences of all the other points on the line

=y

passing through these three points are determined.

Consider an arbitrary 4th point on the line passing through the

‘I L

given three points in frame 1. Since it was shown earlier in this section

that the points in the object space corresponding to a set of colinear
points in the image plane must also be colinear, we can see that the two jl

sets of four points, one set on the image plane, the other set on the planar

L

patch, are in perspective correspondence by definition [22]. Therefore,

the cross ratio [22,23] of the four points in the image plane is the same

ko
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as the cross ratio of the four points on the planar patch at t., which

1)

remains unchanged from tl to t, since the object undergoes rigid body

2
motion. Similarly, the two sets of points, one on the image plane and the
other on the planar patch at tz, also have the same cross ratios. There-
fore, the cross ratios for the two sets of four points, one at tl and the
other at t,, are the same. Then by definition [22], these two sets of
image points are in projective correspondence. It is well known in
projective geometry (p. 83 [23]) that the projective correspondence between
two lines is fully established when three pairs of corresponding points

are given. Therefore, we can see that given the correspondences of three
colinear points, the correspondence of any other point on the line is
determined.

Since there always exist two straight lines not parallel to each
other such that one line passes through two points among the given four
points A, B, C, D and the second line passes through the other two points,
we can assume without losing generality that the line passing through
points A,D, denoted by ‘ﬁ, is not parallel to ‘8-6. Obviously, ‘ATD_' is
also not parallel to‘s_'?’ in this case. Since none of the three among
A,B,C,D are colinear, the point lying on the intersection of B and ‘B-e,
denoted by G, does not coincide with any one among A, B, C and D. Similarly,
the point lying on the intersection of £ and W, denoted by G', does
not coincide with any one among A', B', C' and D'. 1If E lies on either
one of 3 and R, say ‘5’. the corresponding point E' of E is fixed, since

the correspondences of the three points A, G, C, which are colinear with

-
E, are fixed. On the other hand, if E does not lie on either S.-D’ or BC, let

-\ ‘L - | v el anad. e A 3 3 ¥ ey o > Deocunter 2 P . 3 A R p—y .
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Ll and 1.2 be two lines in frame 1l not parallel to any of Xb’ and '53 as
depicted in Figure 3, and let the points at the intersections of Ll’ I.2

and ‘ﬁ? be denoted by H and J, respectively, and the points at the intersec-

. tions of Ll' I.2 and ‘KB be denoted by I and K, respectively.

Frame 1 Frame 2 £8-7380

Figure 3. The point correspondence of E can be determined from the point

correspondences of A, B, C and D.

Since the correspondences of B, G and C are fixed, the correspondences
of all the points on the line ‘B-C. can be uniquely determined. Therefore,
the correspondences of H and J, denoted by H' and J' respectively, are

fixed. Similarly, the correspondences of I and K, denoted by I' and K'
respectively, are also fixed. Therefore, the corresponding point of E in
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frame 2, denoted by E', which lies on the intersection of W and W,
is fixed. We have thus proved that given the correspondences of four image
points with none of the three colinear, the correspondence of any other
point in the image plane can be uniquely determined. Therefore, the mapping
(x,y) — (x',y') is fixed for all (x,y) ¢ Rz. Since the image points are
not colinear, saccording the Lemma II in Section III.l, the matrix Ab is

nonsingular. Then, from [1]{20], the pure parameters are unique.
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Iv. Uniqueness of the Motion Parameters Given Four Point Correspondences

in Three Image Frames

Consider three distinct image frames, taken at three time instances

tl’ tz a'nd t3 (tl < tz < t3), of a rigid planar patch undergoing three-
dimensional motion. It was proved in Section III that given four image
point correspondences in two image frames, the pure parameters are unique,
and from [2], given the pure parameters, the number of solutions for the
real motion parameters is two in general, unless the A matrix in (4) has
multiple singular values, In this section, it is proved that with four
point correspondences in three image frames, the solution for the motion
parameters is unique.

Let A,, be the 3 x 3 matrix containing the eight pure parameters

i]
for the motion from ti to tj’ where £ = 1, 2, 3 and j = 1, 2, 3 and let

ki 1 be the associated constant k as used in (4). Consider a particular

point ¥ on an object. Let

(x,y¥,2) = object-space coordinates of P at tz.
(x',y',2') = object-space coordinates of P at t,-
(x",y",2") = object-space coordinates of P at t3.
(X,Y) = image space coordinates of P at tz.

(X',Y') = image space coordinates of P at t.

X",Y") = image space coordinates of P at t3'

A landk =kt

It can be shown that A 34 13 T

1] In fact, from (15),

dedod,

. e
Aendonibd,
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. x' x 1
' ' - S
d y k21A21 y |
3 '

r R : i L z J . (32) :
- - and o i 1
§ x xﬂ .
‘ Y1 "kphp |V :
0’ ‘ ?
o 1=l - 2’ (33) i
' Since four image point correspondences with no three colinear are given, a
.

according to Lemma II in Sectiom III.l, Aij is nonsingular. Therefore, ]

o

(32) gives

~
¢

ey -.
f . .
. .
’
)
-
)
L}
)
('}
POUSDY e

-1 -1 .
L ' - ;
k141 y y 3
" R 2 (34) g
;;: : Comparing (33) and (34) shows that
[ A . 3
- ol oyl
o Ay =8 0 kp Ty @5) ;
'lun is one possibility. Siice it was proved in Section III.l that given four b
. image point correspondences, the matrix A is unique, this must be the only :
3 3
v possibility. We are now to verify the following composition rules for A“'o 1
4 1
5 g,
E and k,'s: a
= -
L

el e T e . . I o e L .
..... B PR S Lt L L. . R -
L_. -] PP P PP - CRT W W SPeL) enadecdh P S PSPy war
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Ay = Ay A (36)
-y
k“ - knj ko 37 5
9
vhere 1 =1,2,3, §=1,2,3, n=1,2,3andn¢ 4, n#j.
) From (15), we have l!
L <] [t ] 3
. y =k, A y' 2
L z |z (38) J
B and
E : I x"- [ x ]
' = kg Ay y 7
12" | 2 (39) ks
4
Substituting (38) into (39) gives 1
et ] B x' N .
._1
T = Rygkpphosh, | Y
| =" | K wo)
B
But by definition, =
-‘n. [ :l-1 :
y*'| = k,.A v '
13"13 3
_z"d | g! ) “%1) o
o
.




| AN S AR D S AN T TS q
.
Ve 3- 32 -;‘
From (40) and (41), we see that 2
n 2
- A
A3 = Ashp -g
i .]
- k13 = sk :
v
- is one possiblity. Since An is unique given four image point correspondences, ;»';
N ]
this must be the only possiblity. As for other values of 1, j, n in (36) and -
4
f (37), the proof is the same except for the change of indices. ¥
- Since moving the object is equivalent to moving the camera so far e
f- v
; as the image point correspondences are concerned, the situation can be £
r- depicted in Figure 4 where 01, 02 and 03 are the three focal points for -
£ the three image frames when the planar patch is considered to be stationery
' while the camera is moving, for tbe purpose of showing the relationships :
between Au'l and the three image frames. 02 o .
(.;-_ - T ST ) i .'1
b 0, ‘A1z | Az 8
P +(X,Y) %
! - 3
- Az1* Ar2 Azz= Az 3
: (image at time t5) :
pu— Lol
1S N . .
(image at time t;) (image at time t,)
- Az 3 AzsAr
/ \/ \iobject Surface 3
"o 7382
's and the three image frames of a rigid planar patch. .
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o Since four image point correspondences are given, Ay and A, are fixed.
Therefore, all Au's, for 1 =1, 2, 3 and j = 1, 2, 3 are fixed. Then, ‘;

from [2], for the motion from t, to ts there are two sets of solutions
for the motion parsmeters given A,, and for the motion from t, to t,, there 1
_ are also two sets of solutions for the motion parameters given A23. Since ,#
these two motions, one from t, to t, and the other from ¢, to t,, can be x
completely independent in general, the only possibility for the solution ’
of the motion parameters to be unique is that not both of the two solutions h
for the orientations (i.e., the directional cosines of the :;oml directions ;:
of the object surface) of the planar patch corresponding to the two solutions :
of the motion parameters for the motion from t, to t,; coincide with those J
for the motion from t, to t3. This 4s to be proved by contradiction. 4
Assume that there are indeed two solutions. Let the SVD of A:I. 3 be 4
T |

Agy = Uyy Mgy Vyy 2)
vhere
: 1
Al ]

Ay = \ 2(1.,1) %
~
- A{HD @
The approach we shall take is outlined below: -

[V

(1) Prove that

,v.'.v_

.'.' l,'AA
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T 1 i ]
T 1
3 V21 " V23 1 ]
¢ 3
i ' t1
- = ~4
{- (11) Prove that A21 =g A23 for some constant g.
: (111) Prove that A13 - a" I. Then the three singular values for ‘
b the motion from tl to t3 are identical, vhich implies from :
Z [2] that the solution of the motion parameters for the motion 4
._ from t) to t, is unique, contradicting to the assumption _J
h that there are two solutions. h#
I The details for the above three steps are now given:
l’ (A) Since the order of k{""’), )sy"j), k;"'” can be rearranged :1
by parmutating the columns of U:l.j and v’.:l in (42), we can j
alvays assume that 1
1D
(2,1) 2,1 ; , @, '
MU Ay )
and
2,3) 3 ,@2,3) 2 ,(2,3)

If any of the equality signs in (44) holds, i.e., A21 has multiple singular

values, then for the motion from t, to tl. the solution for the motion

2
parameters and the orientation of the object surface at tz are unique

"."J B T I 3 AR _’Az
alatal PP AT TR SN I'AA’I‘MLM Caad

according to Theorem I in [2]. Then, for the motion from t, to t,, the
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solution for the motion parameters must also be unique, since were this
false, the A23 must have distinct singular values and there would be two
solutions for the orientation of the object surface at tz. Similarly,
if any of the equality signs in (45) holds, the solutions of the motion
parameters are unique for both the motions from tz to t, and tz to t3.
If only the inequality signs in (34) and (35) hold, then from Theorem II
in [2], the two solutions for the directional cosines of the planar patch
for the motion from t, to t, are
-‘1, R
- A A
dl bl = w V21 0
bC1¢. - 1 = (46)
and
- ‘21 - -6
- A A
«-l2 - bz = yw V21 0
_°2‘ I 1 ) “7)
and for the motion from tz to t3,
= 0] T 2]
11 [
T4 ol 4
d 1 bl w v23 0
]
€y ) I 1 i %8)

1,
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P

| SR

’l - ”1




..... |
[ b
E 4
; 3- 36

and
® Fn '] r-G' ] ]
. 2
- —r A R a 1
% 4 b, v V3 0 .‘

<

o vhere v and w' are some normalizing constants k
-
= [“2.1)] 2 [ ) 2 12 |
. 1 2 . ]
e - 2 2 ;
& 2,1) - 2,1) g
_ o] - ) ':
E 3

- 2 2~ 12 ;
e 2,3) - |13 N
z:__ [)\1 ’ ] [}‘2 ’ ] R
o . i - 3

@,30] ° _ [,@3)

) p27] - [
f-f Since the two solutions for the directional cosines of the object surface

at tz for the motion from tz to tl are assumed to be the same as those for

¢ /s.
[

the motion from tz to t3. either

-— .—* RS
d, = 47, d, = 4, (50)

oo
L

s ;'n s .I

or

-3

Gl)

forn=1, 2, 3. Then,

———
vt
[T

Lat VS"'” be defined as the nth colum of Vu

from (46) and (47),
K
E

'-!
L2
v N
’ ‘.
P I '."-"..".."-".- R A TecL LT e S T ORI . -'_. LT e e R et e
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) §+§-wv21 o + wvy, 0
[ 1] [ 1
%
- vv21 0 - vvgz’l)
-1-

Since the norm of v§2 »1) is unity, we have from the above,

A A
d, +4d
1 2 -+ v:§2,1)

—-— = 3
I a +3a, |l (52)

2,1) o T~
We now show that v2 is given by the normalized outer product of dl and dz.

[ 5 -5
dlxd2 -wvn 0 vazl 0
|1 | 1

= 'z [5 v{2.1) + va(zol)] X [‘6 v§2,1) + vs(z’l)]

- v [-62 v](_z”') X v{z'” +8 V) o1 v§2.1)

C6u@eD) y D) L @D 4 @D, -

where " X " stands for vector outer product.
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Siace Vv, x V1% = o, VS( 2 v;2.1) =0, and v§2,1) x v{:,],) .

2,1 N
- V](' ) b 4 v3(2 1), we have from ¢3),

—_ 2 (2,1) (2,1)
dy xd; = 2w sV i V3T by -
Since v(z’l) is an orthonormal matrix, we have
,1) 2,1) _ . ¢@,1)
vy X va~? £V,
Substituting the above into (54) gives
= . _ 2. -@2,1)
d, xd, =x2w 8V,
Since vz(z 1) is normalized, we have from the above
Txq
1 2 @,1)
T, =y "V
e xa, |l (55)
1 2
Since v21 is orthonormal, we have
,1) 2,1) 2,1)
v, * v, X Vg
Substituting (52) and (55) into the above gives
, T x T a"‘ + '&A
v{2,1) - 1 2 x 1 2
. . -t b
N E xE e, +4, | . (36)

Similarly, for the motion from tz to :3, one can show using exactly the

procedure as above that colummns of V23 can be expressed as functions of
—

) —
41 anddz

' in (48) and (49) as follows:




________________

7
8)
d.'+d,° g
2.3 1 *t9 1 X4
’ =
vl T = X N
| & +&," | Ia," xa il (9)
With either (50) or (51), ve have from (52) and (57), v{*H) w4 v#r®)
and from (55) and (58), VD) = + v$+®) and from (56) wnd (59),
V{z’l) =+ v{2,3). Thus, we have proved that
- :1 "
Va1 = V23 £l
+1 (60)

(1) Let (x, ¥, 20 (x's ¥ 's 2. ') and (x", y " 2.") be the
new coordinate systems obtained by rotating the coordinate
systems (X,y,z) at £t (x',y',2') at t, and (x",y",z") at tas

respectively, using the orthonormal matrix vn as follows:

L

Deocmanad
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>
-

: z z 61)
L - -
- - - -
] ]
x x

-
] -
]

z' (62)

)
1. ¥
ik, .
]

1

L]
J

vy

¢ )

z ”" z" (63)

| 4 - - — - T r -
5 x +1 x
o Y - V23 +1 y
s
‘ [ £l [ x ]
b
. - T
L’ = 1 v23 y
+1 s
£
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or
-s x | (x
1™n
T
A Ya v23 y
Ll3 zn | Z ] 64)
where s = +1, i1 =1, 2, 3, Similarly, from (60) and (63), we have
-.1 xn"- [ x"]
T
'2 yn" v23 yll
.3 ztlu ) Lz" (65)

(64) and (65) indicate that the new coordinate systems (sn, A zn) in

(61) and (xn", yn", zn") in (63) can also be obtained, except for the signs

by rotating the old coordinate systems using V23 instead of V21. Note

that in (64) and (65), (x, ¥y, z) is the coordinate system at tz and (x", y", 2"
is the coordinate system at t3, while V

23
3 which characterizes the motion from

is the matrix in (42) containing

the singular vectors for the matrix Az

tz to t3. Similarly, in (61) and (62), (X, ¥y, 2) is the coordinate system

at t, and (x', y', 2') 1s the coordinate system at t while vzl

in (42) containing the singular vectors for the matrix A21 which characterizes

is the matrix

the motion from tz to tl. According to [2], 1if the original coordinate
systems in the object space are transformed as in (61) and (62) using Vz1
for the motion from tz to tl' there is a rigid circle lying on the inter-

section of the object surface and the ellipsoid

4 =k 2 (@2 2+ nB PR 24 p D2 D (66)

PN N SV - ' PR S . SUE I WP U Y T : PSP ST 4 vvlos sl sfieontimedhtan W WS RD WUP I . PR W ¥
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at 1:2. while at tl’ this rigid circle must lie on the intersection of
the object surface and the sphere
-x 12 12 2
dl x5y, o+ ‘n_ ©7)
where dl. is some constant. We would like to show that this rigid circle
must be concentric, on the object surface, with another rigid circle that
lies on the intersection of the object surface and the ellipsoid
3 2 »3
4, =k (A2 22, nB)2 52, 0292, Y (68)
at tz and on the intersection of the object surface and the sphere
2 "9 2
= " U
d, =x"+y © 42 (69)

at tg for some dz.

Because of (60), (61) and (64), we can see that the principle
axes of the two ellipsoids in (66) and (68) are the same. From (46), (47)
and (61), the solutions for the directional cosines of the planar patch at

t, in the new coordinate system for the motion from tz to t, are given by

- - - -

26 28

vn w vn o = w' 0

| 1 Ll

Similarly, “from (48). (49) cnd (64). thc aolhtions of the dizectional cosines
of the planar patch at £, in the new coordinate system for the motion from

t, to t, are given by
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e

T

Va3

PR |
v st

L
F From the above two equations, we can see that in the new coordinate system, ‘]
<

the normal directions of the object surface at t, must be perpendicular to

2

b the y_ axis, both for the motion from t, to t, and for the motion from t a
to t,. Since the principle axes of the two ellipsoids in (66) and (68) "3

:‘:. coincide with the x> yn and z, axes and since the normal direction of the

planar patch is perpendicular to the y_ axis (or equivalently, the planar &
n

patch is parallel to the Y axis) we see that the centers of the rigid

circles lying on the intersections of the planar patch and the ellipsoids

either in (66) or (68) must be on the x ’n plane. Obviously, for a

g particular planar patch, as d, increases, the dimension of the ellipsoid

1
in (66) also increases and, consequently, the center of the rigid circle <9

that lies on the intersection of the planar patch and the ellipsoid becomes
closer to the z axis. In the limit, as dl. goes to infinity, the center
is on the s axis. Similarly, as dz becomes large, the center of the rigid -
: circle on the tntcx:acctton of the planar patch and the ellispoid in (68)
.. approaches the z, axis. On the other hand, as d1 decreases, the rigid
circle lying on the intersection of the planar patch and the ellipsoid
- in (66) gradually shrinks to a point. For a particular planar patch, let
eho distance between this limiting point and the L axis be . Similarly,
: as dz decreases, the rigid circle lying on the intersection of the planar
patch and the ellipsoid in (68)' also shrinks to a point. Let the distance
between this limiting point and the s, axis be Pz. Then it is seen that
the distances between the £, axis and the centers of the collection of
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circles lying on the planar patch and the ellipsoids in (66) for some range

of d1 vary between 0 and Pl. vhile the distances between the 5 axis and
the centers of the collection of circles lying on the planar patch and the

ellipsoids in (68) for some range of ¢l2 vary between 0 and Pz. Let P3 be

such that

From the above, it is obvious that there exist at least two rigid circles
lying on the intersections of the planar patch and the ellipsoids in (66)
and (68), respectively, such that the centers coincide with each other and

the distances between the center and the z, axis is Py°

Let the equation describing the object surface at cz be expressed as

axX+By+yszssl]

for some @, B, Y € R. Note that at this point we do not know whether
a, p and v in (70) are unique or not. However, any choice of o, B and
Y will lead us to the conclusion we are expecting for step (ii) as to be
seen in the following. Substituting (70) into (66) gives

(70)

Y Y
NNk | :
+ |2 -4 (71)
.

Similarly, substituting (70) into (68) gives

Snabenilociliil PO

o
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3 ‘ 3 12

3 A 2P 72 A& 2,3)2 2

" [1(2 3)]2 + [_3.__.. a g: - 2a 3 » 8 [l( Yn

f:?:‘. Y

L 2,372

. + [‘YL =4 (72)

TEa Ko LY T e ¢

R o 0
e e
. « /d.Af’,«'_'. ()

Since s 1o longer appears in (71) and (72), the two curves in the LI A

Plane described by (71) and (72) are the verticsl projections of the two

concentric circles in the (qn, A zn) space into the x, Y plane and, ;

therefore, must be two ellipses that are identical up to a scale factor. i

By equating the coefficients in (71) and (72) up to & positive propor-

tionality constant h, we have

(2,1) 12 (2,3) ] }
” A (2,312 (73)
(2,1)]2 3 X [ ———C
[ V]2 . - ] {[ )

- (2'3) 2
13(2'1) 2 B Ay ‘ (78)
-2 =T\ 20 | wm—
d]_ Y 2 Y
(2,1)]2 | '
A ' h (2,37] 2
[_21.1._] R [ d (15)
(2,3)
1 3(2 1) I [ 3 ] (76)
Tl- Y l; Y .
;
Let g .( ;l h)&. (Note that d,, d, and h are all positive). Thea (74) ‘
2 _ ]
5 becomes H
I
e T :

But since the singular values are nonnegative by definition, we have
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Similarly, (75) gives

2,1) (2,3)
.Az ’ - - )sz ’

Substituting (78) into (73) gives

ey (2,102 . ga ., (2,3).2 (2,3),2 a
A B e N N

Y

or [11(2’1)]z

(s 11(2.3)]2

N A

From (77), (78) and (79), we have

Ayy = 84y,

(iii) From (36), we have

A3 = Ay A

(35) and (81) give

-1
A3 = Ay Ay,
T T.-1

= (Up3 Agg V530U, Ay, V,))
-1

1 T
= (Up3 Ag3 V33 (Vyy Mgy Uyp)

Substituting (60) and (80) into (82) gives

13(2,3)];

(77)

(78)

(79)

(80)

(81)

(82)
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R AN

1l

vhere A 8 g I

sl

v & Uy 31

2l

v A"23

Since U,, is orthonormal, it is obvious from (85) and (86) that U and V
are orthonormal. Also, since g 2 0, A in (84) is a diagonal matrix with
nonnegative diagonal elements. Therefore, from definition, (83) is the

singtlar value decomposition of Agge But since the singular values are
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unique given A 3> we have

-1.
I\l3 = A = 3 I (87)

Therefore, Alsl’a) - 12(1’3) - x3(1o3) -

Since the three singular values of A13 for the motion from ¢, to ty are
identical, from Theorem III in [2], the motion parameters are unique,
contradicting the assumption that there are two solutions. We have thus
proved that given four image point correspondences in three imsge frames,

the solution for the motion parameters is unique.

''''''''
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. V. Conclusions

We have shown that in estimating three-dimensional motion parameters
of a rigid planar patch the eight pure parameters used in [1] and [2] are

unique, and can be determined by solving a set of eight nonsingular linear

W

equations given the image correspondences of four points with no three

colinear both before and after the motion. In [2] it was shown that given
the eight pure parameters, there are two possible solutions to the motion
parameters. It is proved in this paper that given four image point cor-

respondences in three (distinct) perspective views, the motion parameters

e
’L."_'
39
pet
[
be.

bo-
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[

are uniquely determined.
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